
Theory of 'self-similarity' of periodic approximants to a quasilattice. II. The case of the

dodecagonal quasilattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2147

(http://iopscience.iop.org/0305-4470/25/8/028)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Theory of ‘self-similarity’ of periodic approximants to a 
quasilattice: 11. The case of the dodecagonal quasilattice 

Komajiro Niizeki 
Department of Physics, Tahoku University, Sendai 980, Japan 

Received 24 September 1991 

Abstnet. The space groups of the periodic approximants (PAS) to the dodecagonal quasi- 
lattice in two dimensions are investigated. The Bravais lattices of the PAS are tetragonal 
(p4mm), rectangular (pmm), hexagonal (p6mm) and rhombic (cmm). We present several 
series of PAS, each of which is derived from a prototype PA by a successive application of 
the deflation-and-rescaling (DAR), and the space group is common among the members. 
Each series is wmposed of two subseries: the consecutive members in each subseries are 
related by the ‘proper’ DAR and the two subseries are related to each other by the ‘improper’ 
D A R .  

1. Introduction 

We have shown in a previous paper (Niizeki 1991c, to be referred to as I) that 
self-similarity of a quasilattice (QL) gives rise to a striking relationship among the 
periodic approximants (PAS) to the QL: the PAS are grouped into series so that (i) each 
series is generated from its prototype by a successive application of the deflation-and- 
rescaling, (ii) the space group is common among the members of the series and (iii) 
the unit cell of the PA is scaled up by T with the series number, where T is the scale 
of self-similarity of the relevant QL. 

We have excluded in I the case of the dodecagonal quasilattice (DQL) in two 
dimensions (ZD) because its self-similarity is unique among important Q L ~  in 2~ and 
3 ~ :  the relevant self-similarity transformation is ‘improper’ in the sense that it is not 
a pure dilatation but a combined operation of a dilatation and a rotation through n/12 
(Stampfli 1986, Niizeki and Mitani 1987). Moreover, the DQL is rich in space groups 

cyclic group 12 has four non-trivial crystallographic subgroups, 2, 3, 4 and 6, whereas 
8 or 10 has only two or one, and (ii) has three series of best approximants. We 
shall investigate in this paper the space groups ofthe PAS to the  and the relationships 
among them derived from the self-similarity. 

We summarize in section 2 the properties of the DQL, and in section 3 its self- 
similarity. In section 4 we investigate extensively PAS to the DQL. This section is divided 
into four subsections. Section 4.1 is an extension of the theory in I to the DQL. Fibonacci 
number analogues associated with the DQL are introduced in section 4.2. The mother 
lattices of the PA$ to the DQL are investigated in section 4.3 and several important series 
of PA$ are presented in section 4.4. Section 5 is devoted to a discussion. 
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2. The dodecagonal quasilattice 

A QL is obtained by the projection method from a mother lattice which is a periodic 
lattice with higher dimensionality than the physical dimension (see, for example, 
Janssen 1988). Prior to the projection, the mother lattice is cut with a strip which is 
characterized by a phase vector and the window (a  finite domain in the internal space). 
Two QLS with different phase vectors but a common window are locally isomorphic 
but two QLS with different windows are not. 

A DQL is obtained when the mother lattice L is the dodecagonal lattice (pl2mm) 
in 4~ (Niizeki 1989a). The 4~ Euclidean space E4 into which L is embedded is 
decomposed into the physical space EZ and the internal one E ; ;  E4=E20E; .  Let 
&,=(e, ,  el) with e,€ E, and ejE E ;  be the basis vectors of L: L =  
{ P i n i ~ i l ( n l ,  n2.  n , ,  n,)EZ4]. Then ei (or el) are related to each other by e,,, = re, (or 
el,, = r'el) with i = 1,2 and 3, where r (or r') is the rotation through a j 6  (or -5a/6); 
r'= -r. leil (or lell) take a common value, which we shall denote by a (or a'). In fact, 
the value of a' is nothing to do with the properties of the DQL and we can choose a' 
arbitrarily. e, (or e l )  are linearly independent over 2. Note that e, and e, are perpen- 
dicular to each other and so are e: and e:. 

The 2-module Lp=PL={Xi  nieiI(nl,  n2,  n3 ,  n4)eZ4} (or Lb = P L )  with P (or P') 
being the projector onto E2 (or E ; )  is a dense set in E2 (or E;) and called 
a prequasilattice. E2 has an incommensurate orientation with respect to L and 
L n E2 = (0). 

Twelve vectors e. = (r),-'e, (or e: = (r'),-'ei), i = 1-12, represent the vertex vectors 
of a regular dodecagon D (or D'), whose eoint group is G =!2mm. The 40 rotation 
;= *Or' is an element of the point group G (312") of L. G is generated by i and 
the 4~ mirror 6 = u@u', where U (or d) is a ZD mirror whose axis includes e, (or 
e;). 6 leaves E2 and E ;  invariant and acts onto these two subspaces as ZD point groups 
G and G' ( = G ) .  We sometimes identify 6 with G. L, is invariant against G. 

We may write F ( E , E ~ E ~ E , ) = ( E ~ E ~ E ~ E ~ ) R .  where R is a unimodular matrix given 
in the appendix. From r^'= -1 and ?"=1 we obtain R 6 = - I  and RI2= I (the unit 
matrix is denoted in this paper by I irrespective of its dimensionality). 

We can index X = & X ~ E , E  E, as [x,x2x3x,]. We may say x is a rational point with 
respect to L if xi are all rationals. Rationality of a point in E2 (or E;) with respect to 
L, (or Lk) is defined similarly. Then, P (or P') is a bijection between the set of all 
the rational points in E4 and that in E, (or E ; ) .  If x E E4 is a rational point, we may 
index PX and P'x with the same index as that of x. 

The DQL obtained from L with the projection method is written (Niizeki 1991b) as 

Q(x, W ) = { P ( l + x ) l l E L , P ' ( l + x ) E  W ]  (1) 

where X E  E4 is the 4~ phase vector and W (c E;) the window. We assume that W is 
a polygon with the point symmetry G' (-12mm) and its vertices are rational points 
with respect to Llp. 

Several types of D Q L ~  are obtained by choosing different windows (Niizeki and 
Mitani 1987). The canonical window W, of the DQL is a regular dodecagon whose 
vertices are given by ui = (r')'-'uI, i = 1-12, with uI = [ 1 T l i ] / 3 ~  E ; .  W,  includes D' 
( W c 3  D') .  The relevant DQL is formed of the vertices of Stampfli's dodecagonal 
quasiperiodic tiling (Stampfli 1986). as shown in figure 1. The basic tiles of the tiling 
are a square, a regular triangle and a rhombus. On the other hand, if Ww= D' is used 
as the window, we obtain a DQL associated with a tiling with squares, triangles and 
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Figure 1. The dodecagonal quasilattice obtained from the 4~ dodecagonal lattice L by 
using the canonical window. The lattice points are given by the positions of the vertices 
of the dodecagonal quasiperiodic tiling. The centres of squares, triangles or rhombi are 
derived from the sw of type M, T or C of L. The once inflated QL is superimposed with 
the broken lines. The bonds in the inflated QL have different direnians from those of the 
Original QL. 

trigonal hexagons; a hexagon is a union of one square, two triangles and one rhombus. 
Let W. be the dodecagonal star whose convex (or concave) vertices coincide with the 
vertices of W. (or WD,). Then W D , s  W , s  W, and the DQL derived with W, is obtained 
from that with W,. by dividing each trigonal hexagon into four basic tiles. 

x E E., is called a special point (SP) if its point symmetry with respect to L is a 
centring group, which is a subgroup of 6. An SP is a rational point. There exist six 
classes of SPS (Niizeki 198Ye, 1990). The six are represented by the symbols r, X, C, 
M, T and T'. Their representatives are [OOOO], [hOOO], [hhOO], [hOhO], [rOfO] and 
[ t t t t ]  with h = p  and f = f  and their point groups are 12mm, mm, mm, 4mm, 3m and 
3m, respectively. 

The projection of an SP of L onto E, (or E ; )  is called an SP with respect to Lp (or 
L;), The vertices of W, are SPS of type T'. The vertices of the dodecagonal tiling in 
figure 1 are derived from r, the midpoints of the bonds from X and the centres of 
rhombi, triangles or squares from C, T or M. 

The 12 mirrors of l2mm are grouped into two classes, A and L (Niizeki 1Y91a); a 
mirror of type A passes a vertex of 0, while that of type I the midpoint of an edge. 
A representative of A (or I) is U (or m). 

3. Self-similarity of the DQL 

The 4~ transformation i =  T I @ T ' I  with 7 = 2 + &  being a PV unit and ~ ' = 2 - &  
( = 1 / ~ ) ,  the algebraic conjugate of r, induces a unimodular transformation among ei: 

i(EIE*E,E4) = ( E I E 2 W J M  (2) 
where M is a unimodular matrix given in the appendix; det(M)= 1. It follows that 
iL=L.Notethat 7 " = 2 + i + ? - I , s o t h a t M = 2 I + R + R - ' .  iactsasasca!etransforma- 
tion onto each of the two subspaces E, and E ;  and is commutable with G. Using these 
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results, we can prove that the DQL has a self-similarity whose scale is equal to T = 2+A 
(Niizeki 1989a). 

Since R2+ I is a regular matrix, we can conclude from R6+ I = 0 that R4 - R2+ I = 0 
and, consequently, ( R  + R2) (R  - R2)  = 1. Therefore, MO = R + R2 is a unimodular 
matrix, which is given in the appendix ( (MO)-’  = R - R 2 ) ,  and io= r^+ i2 as well as i 
is an automorphism of L; ;oL= L. We may write CO= T&T; with T ~ =  r +  r2 and 
~ ; ) = r ’ + ( r ’ ) ~ .  We obtain T ~ = - ( T ~ ) - ’  because r ’ = - r  and r 4 - r 2 + l = 0 .  On the other 
hand, T~ is equal to Tprs, where T ~ =  (a+ I ) / a  is the ‘platinum ratio’ and r, the 
rotation through n/4. That is, T~ (or T A =  - (T, , - ’ )  is an expanding (or contracting) 
similarity trayformation of E2 (or E;) .  It cannot be reduced to a pure dilatation 
because rse G; T~ is an ‘improper’ dilatation. r̂ , 6 and eo are commutable with each 
other and we obtain (eo)’ = F3i. Since r*’ E G, (0’ is equivalent to as a transformation 
of L. Note that ;o exchanges the two types of mirrors, A and X (Niizeki 1991a). 

Using these results we can prove as in I that 

Q(X, w)=TO’Q(i& TbW). (3) 

Since W 5 W, Q(e0x, ~h W )  is a sublattice (subset) of Q( Gox, W), so that T ~ Q ( x ,  W )  5 
Q(;& W). It follows that the DQL has the ‘improper’ self-similarity with the transforma- 
tion T~ (Niizeki 1989a). The ‘improper’ inflation of the DQL in figure 1 is superimposed 
in the same figure. The directions of the bonds of the inflated DQL bisect those of the 
original ones because 15”-45”mod30”. It is important in a later argument that the 
vertex vectors of the dodecagon TLD are given by e;+el+, ,  i= 1-12, with e;3= e;. 

The4~transformationp^-pIOp’l withp=I+&andp’=l-f isat isf iesp^LS L. 
More precisely, det(p^) =4, and p̂ L is one of the four equivalent sublattices into which 
L is divided (Niizeki 1989~).  The integer matrix associated with p is given by M - I 
because p = T -  1. p is a (non-unit) PV number because Jp’J < 1 and we can prove that 
the DQL has so-called the type I1 self-similarity with scale p (Niizeki 1989~).  A similar 
argument applies to the non-unit PV number 3+2& (=&T).  

4. The periodic approximants to the DQL 

4.1. The general theory 

A PA to the DQL is constructed by the projection method from a 4~ lattice i which is 
a deformation of L due to a linear phason strain. The strain makes a-2o lattice plane 
112 of L overlap perfectly with the physical space E l ;  QI12 = E, and L = QL, where @ 
is the linear transformation associated with the phason strain. We shall call L a 
commensurately deformed lattice (CDL) because it is fully commensurate with E,, in 
contrast to L. 

112 is spanned by two lattice vectors of L, so that it is indexed by a 4 x 2  integer 
matrix K whose columns index the two lattice vectors. II, is indexed, equivalently, by 
the dual index J, which is a 2 x ,4 integer matrix satisfying JK = 0 and rank(J) = 2. Let 
H be a maximal subgroup of G such that it leaves U, invariant. Then it is the point 
group of i and is decomposed as H O H ’  in which H acts onto E, and H’ onto E; .  
In fact, H = H‘ and H is crystallographic in 20. H is identified with H. 

Every SP of i has its associate among the SPS of L. If an SP of L has inversion 
symmetry, it remains as an SP after the phason strain is introduced, while SPS of the 
types T and T’ remain as spr only when the strain preserves the trigonal symmetry. 
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The basis vectors Et (=@ei )  of I? are decomposed as di = (ei ,  hi) .  Only two of the 
gls are linearly independent over 2, (i;C;h;.?:)K = 0, and we obtain 

(;~d~h;Z:)=(b,b,)J (4) 

where b,EE; are linearly independent over R. Two rows of J represent rational 
approximations to the incommensurate ratios associated with the two directions b, 
and b,. 

The Bravais lattice of the PAS obtaiced from f is given by L, = i n  E,, while 
Lb= P'L is called the shadow lattice of L (Niizeki 1991b). Two vectors defined by 

(ala2) = (ele2e3e4)K (5) 
are linearly independent over R and belong to L,. a, and a, (orb, and b,) are basis 
vectors of L, (or L,) only when K (or J )  is 'unimodular'. This case will be called 
irreducible. The point groups of L, and L, are given by H and H'. 

A PA to the DQL (1) is given by 

&i, @) = {P( I  +:)I I E i, P ( l + i )  E @I (6 )  

with i= @r and @ being an appropriate deformation of W The Bravais lattice of 0 
is equal to L, and the space group is determined by the relative position of P ' i  to L, 
(Niizeki 1991a). In particular, the point group is equal to that of P ' i  with respect to 
L,.  Moreover, if i is an SP of i, J% is an SP of 0 (Niizeki 1991b). 4 is called a regular 
PA if its point symmetry conforms to the Bravais lattice L,. In order to obtain a regular 
PA, it is necessary that P'r' is located on an SP or a special line of L, (Niizeki 1991b). 
The space group of a PA associated with a special line of L, is a subgroup of that 
associated with an SP which is located on the special line (Niizeki 1991b). 

Let UEE; be a vertex of W and assume that U is indexed as [&c2&] with 5. 
being rationals. Then it ispatural to assume that @ is a polygon and 6 =Et  &dl is the 
corresponding vertex of W to U. This prescription determines @ uniquely (cf I). We 
shall denote-it symbolically as W = @ W  For example, the vertex vectors of the 
dodecagon D'= 0D' are given by dl. 

which is 
indexed byK '=  KMoorJ'= -J(M,,-'.Thec~~associatedwitbII~isgivenbyi'=6~~ 
and we obtain L; = 2 n E,  = T ~ L ,  and L: 9 Pi' = T&; ,L; and L: are similar to L, 
and L,, respectively. The point group of 2 is given by which is isomorphic 
with H. 2 is obtained from L with the phason strain @'= 6,,0(Go)-', which is smaller 
than @. 

We shall denote by @(y,  V) the PA which is derived from 2 with an arbitrary 
phase vector y and a window V. Then we can prove in a similar way as in I that 

The ZD lattice plane Il, is transformed by ;o to another one, II;= 

o'(?, T b @ ) = T o O ( r ' ,  @) (7) 
with ? = P o i .  On the other hand, @(?, 6") with 6"=0'W is a PA to Q(Gox, W) 
because i' = O'tox. Moreover, &.?, T A @ )  E of(.?, 6") provided that T ; @ E  6". Thus 
we can conclude that &.?, 6") is the DAR of &.f, @). 

Let p:. = 0' W, and assume that 6l are the vertex vectors of @:. Then we can show 
that the vertex vectors of the dodecagon ~ 6 % ~  are given by 6:+6:+,, i=1-12, with 
6 i 3 ~  6;. A similar relation remains correct also in the case of the window W,. or W,. 
T;  W is invariant against the point group which is the restriction of the point group of 
2 onto E;. Therefore, &?, W') and Q'(2, T A @ )  have a common space group. Using 
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these results and making a similar reasoning as that in I we can conclude that the PA. 
to the DQL are grouped into several series, each of which is derived from the prototype 
PA in it by a successive application of the deflation and rescaling (DAR) and the space 
group is common among the PAS in the series. 

A series of PAS, &, Q,, 02,. . . , can be divided into two subseries &, 02, &. . . 
and o,, 03, 0,. . . . and two consecutive members in each subseries are related by the 
'proper' DAR, which is defined by using the transformation i; the second subseries is 
derived frnm the firs! by !he 'impreper' EAR. 

4.2. n e  Fibonacci number analogues associated with 2 + fi 
The quadratic irrational ~ = 2 + &  is the positive root of the equation ~ * = 4 ~ - 1 .  
Iterating the equality ~ = 4 - - 1 / ~  yields an infinite continued fraction, though it is not 

consecutive numbers of the integer series defined by the recursion relation u,+~ = 
4uk - uk-I with uo = 0 and uI = 1; early members of the series { u k }  is listed in table 1. 
From the recursion relation, we can prove that uk+l - uk/T  = T', so that uk+, - u k / +  = 
( T ' ) ~  or, equivalently, uk+l - u ~ T =  1 / ~ ' ,  which gives a measure of the accuracy of the 
approximant T =  uk+, /uk .  Note that U ~ + ~ / U ~ >  T. 

reg..!ar. !! give: rise to 8 series nf ratinna! approximants to 7, which are the r8tio: af 

Table 1. The Fibonacci like series associated with 2+&. 

{ukJ={I ,  1,3,  11.41,. ..I 
{u , }=(O,  1.4,15,56,. . .} 
{wkJ={1 .2 ,7 ,26 ,97  ,... 1 

Let us derive from the series {uk}  another two, { u k )  and (wk} ,  by uk=  uk -U,-, and 
w, = U, + uk (see table 1). The new series are generated by the same recursion relation 
as that of {U,) but with different initial conditions. The parity alternates in { u k }  and 
{w,), while { u k }  is composed of odd numbers. Note that u k + , - u k / i =  (a-1)~~ and ... _... /---.E-* 

Best approximants to T are obtained by the continued fraction theory from its 
regular continued fraction expansion. They are grouped into three series { U k + I / U k ) .  

{uk+,/  uk)  and ( w k + I / w k } ;  U,+,/ uk and uk+l/uk are principal convergents to the continued 
fraction but wk+,/ wk is an intermediate one between uk+, /uk  and uk,,/uktl. Note that 
{uk+ , /uk ) ,  {Wk+l/wk)<T. Since W ~ ~ , < U ~ < U ~ < W ~ ~ U ~ + ~  for k 3 2 ,  the three series of 
zpprooximantr ~ T P  merged i c t ~  one grand series and they are the members of the 
three-cycles in the grand series. 

If p / q  is a best approximant to T, ( p - 2 q ) l q  ( = p / q - 2 )  is to &. Note, in this 
respect, that u k + , - 2 u k = w k  and w k + , - 2 w k = 3 u k .  That is, w k / u k ,  tk /uk  and 3uk/wk 
are bestapproximantstoJfwith t k=uk+I -20k  (=uk+uk- , ) .  Notethat w k + & u k = ~  
and t k+&uk=(&- l )Tk .  

Let us assume that p / q  is an approximant to &. Then 7(p+v'?q) =p'+v!fq' with 

W k + I  W k ,  1 - V J 1  . 

k 

p'jq' is a more accurate approximant to & than p / q ;  p ' f q '  is the next generation to 
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p / q  with respect to the scaling with r. For example, if p / q  = wk/uk,  then p ’ / q ’ =  
wk+, /uk+, .  Similarly, the ‘next generation’ to p / q  with respect to the scaling with P 
(=1+&) is given by (p+3q) / (p+q) .  For example, the ‘next generation’in this sense 
to is f x + l l v ~ + l .  

4.3. 7he mother lattices of the  PA^ with mirrors 

We shall investigate only the PAS having two mirrors perpendicular to each other. The 
mirrors must be of the same type (A or X). We consider for the moment the case of 
type A mirrors, which are assumed to be parallel to e, and e, in E2.  Let us take the 
Cartesian coordinate systems for E2 and E ;  so that the two axes coincide with the two 
mirrors. Then we may write 

with a‘= 2. The first (or second) component of el refers to the horizontal (or vertical) 
mirror in E;, so that &‘in the first (or second) row in ( 9 )  is the incommensurate ratio 
associated with the relevant mirror axes. We take a ZD lattice plane 112 indexed by the 
dual index 

-s r -2s 
J=(: - p  

where p / q  (or r / s )  is a rational approximant to 8 in the first (or second) row in (9). 
The dual index K to J is given by 

which satisfies JK=O. We can assume that p / q  and r / s  are simple fractions. Then I 
and K are both irreducible (unimodular) except for the case where p = s  mod 2 and 
q = r mod 2 but they are both reducible in the exceptional case. 

Note that ( r / s ,  p / q )  is equivalent to ( p / q ,  r / s )  because they are transformed to each 
other by the 4~ mirror F3r? (E G). We are interested in the case where both p / q  and 
r / s  are best approximants to 4. 

From (5)  and (11 )  we can conclude that a, (or a2) is horizontal (or vertical) and 
a , = I a i I = a ( p + 8 q )  and a , = l a , l = n ( r + f i s ) .  Similarly, b, (or b2) is horizontal (or 
vertical) and b , = I b , l = d ? a ’ / ( p + & q )  and b2=lb21=&a‘/(r+&s).  I f K  ( o r J ) i s  
irreducible, a, and a2 (or b, and b,) are the basis vectors of L2 (or L5); the Bravais 
class to which L2 (or L,) belongs is p4mm (a square lattice) or pmm (a rectangular 
lattice). On the contrary, if it is reducible, the centring takes place and the basis vectors 
are a: = (aI -a2)/2 and a; = ( a ,  + a2)/2 (or b ;  = bi - b2 and b; = b,  + b2); L2 (or Ls) 
belongs to p6mm (a hexagonal lattice) or cmm (a rhombic lattice). 

The ZD lattice plane ;lT2 of L is indexed by K ‘ = K M  (or J’= JM-’1. K’ (or J’) 
takes the form (11) (or (10)) but p, q, r and s are replaced by their next generations, 
p‘, q’, r’ and s’ (cf (8)). Consequently, ? ( p / q ,  r / s ) = ( p ’ / q ’ ,  r’/s’). 

We consider next the effect of the transformation to onto a CDL. Since Go exchanges 
the two types of mirrors, A and 2, it changes the type of mirrors of a CDL to the other 

The CEL assL?ci.ted Wi!!! “ 2  is characterized by the pair of fractions (p/q, T I S ) .  
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type. Therefore, a CDL with type >: mirrors is written with an appropriate CDL ( p / q ,  
r / s )  as i , ,(p/q, r / s ) ,  which we shall denote as ( p / q ,  r / s ) = .  Then, the relevant lattice 
plane of L is indexed by ICx= KM, (or Jx= -J (MJ- ' ) .  We obtain 

where t = p + q 9  u = r + 2 s  and u = r + s ,  Therefore,the!wo mirrors ~ f ( p / q ,  r / &  are 
parallel to e,+e, and e , -e ,  in E,. The expression for Jz is natural because the 
components of e; ,  i = 1-4, along the mirror axis e;+e;  (or e; - e ; )  are proportional to 
(p ,  -1,-1,p) (or (-p',-l,l,p')) with p = l + & ( o r  p'= l -&)  and f / q  (or u / u )  is 
an approximant to p (or Ip'I). 

Since a PA associated with ( p / q ,  r / s ) =  is constructed with ( p j q ,  r / s )  by (7), we 
need not consider the CDL ( p / q ,  r / s h  any further. It should be noted, however, that 
PAS of type A and those of type X have no relations in the case of the octagonal QL 

(see I) or the decagonal one (Niizeki 1991b). 

4.4. Seuerul important series of  PA^ 

We will not be interested in a PA such that the values of the two lattice constants a: 
and a, are very different. We consider in this section the case where p / q  is fixed to 
wk/uk and r / s  takes one of the four choices: (I) wk/uk, (11) t k / u k ,  (111) 3uk/wk and 
(IV) w*_,/u,_,.Thatis,u,isfixedto arkanda,/u,=l,&-l,&andl/~,respectively.  
On the basis of the parity sequences in {uk) ,  { u k )  and {wk) together with tk = uk mod 
2, we can show easily that K and J are irreducible in I and I1 but are reducible in 111 
and IV. More precisely, L2 and L. belong both to p4mm, pmm, p6mm and cmm for 
I, 11, I11 and IV, respectively. The unit cell of L, in IV is similar to the rhombic tile 
in the DQL. Since ( p / q ,  r / s )  and ( p / q ,  r / s ) =  are distinguished, there exist eight series 
of C D L ~ ,  IA, E, IIA, IIZ, IIIA, IIIZ, IVA and I n .  A CDL in each of the eight series 
can be designated, alternatively, by the series symbol and the number in the series, 
e.g. IAk, I&, IIAk, etc. 

IA and E, for example, can be considered to be subseries of the union series, 
I = IA U 11,  which is generated from IA,, by a successive application of e,,, while IA 
(or IX) is from IA, (or I&) by a successive application of G. 

We consider only regular approximants associated with the SPS of L,. The zelevant 
SPS are r ([OO]) and M ([hh] with h =;) for the square lattice, r, M, X ([hO]) and Y 
([Oh]) for the rectangular lattice, r and T ([21]/3) for the hexagonal lattice and r 
and M for the rhombic lattice. The point group of each of these SPS is the same as 
that of L, except for the case of T, whose point group is 3m. A PA associated with an 
S P  will be represented by the symbol for the SP as Q[r], d[X], etc, or, more precisely, 
as IAk[Tl, IIZk[X], etc. 

The SPS of class C of the 4~ dodecagonal lattice L have mirrors of type Z only and 
the mirrors are lost by the introduction of the phason strain of type A; only the inversion 
symmetry is preserved on the deformation. On the other hand, the SPS of classes X, 

they are parallel to the mirrors of the strain. Thus, C D L ~  in IA, for example, have only 
two classes of spS with the-point group 4"; they are derived from r and M of L. 

The space group of Q[r] is always identical to that of L,.  However, a few 
considerations are necessary for the cases of other spS. We begin by considering the 

.U 2nd p. have mirrors of !ype A. These mirrxs PTP !OS! by the phason s!rain ??n!ess 
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case 4[M]=IAk[M], whose point group is 4mm. A PA with the space group p4mm 
has two classes of SPS whose point groups are 4". Such s p S  must be derived from 
spr of classes r and M of IAk. However, the latter SB are projected onto the SPS of 
IAk[T] only. Therefore, the space group of IAk[M] cannot be p4mm and is determined 
to be p4g. The space group may be explicitly shown as IAk[M]/p4g. By similar 
arguments, we can determine the space groups of PAS of other cases. These results are 
summarized in table 2. 

L...~-I ..,a AX---..+ a "-._ ..-" -mlne+arl :- c -.._ ~- I c T A  r r i  r i i ~  r r i  

and I"Xo[r] are the prototype approximants in the relevant series; they are a square 
Y I . * L " .  r,.a ".La. Y . l l L . l L . l l L  n p a u ,  6,"up a,L p"C"C.'LCU I,. .'6"'C" &-_I. 'YOL' J, "'YOL. J 

Table 2. T h e  space groups of regular approximants in the four series I, I I ,  111 and IV. The 
Bravais classes of the four are shown in the first column. The second block of columns 
show the space groups when the phase vector P'x is located on the special points of L, 
(the shadow lattice) as shown in the first row; M in the row should be read as T for case 
I l l .  The last column shows the ratios of the lattice constants of the rectangular unit e l l .  

(0 )  

Figure 2. The periodic approximants ( a )  IA,(T)/p4mm and ( b )  IA,(M)lp4g (full lines) 
an" rns,r lnllallona ,o'"E.cn ""CS).  1 ,IC Inll*,sY VAS arc cquat I" l*o,l I all" LL.,M, except 
for their scales. Bath the two PAS with full lines are derived from the CDL Id,. The unit 
cell of ( a )  is the square whore comers coincide with the centres ofthe 12-pronged vertices, 
while that of ( b )  is shown with chained lines. The vertices (or edge centres) of the unit 
cell in ( b )  are the special points of the point group 4 (or mm). 

-~>.L.!-:.a..: ..., L..,...,..% -. :.-...A -. 3 . .  1- ,....>sv I . , \  
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faJ l b l  

F i p m  3. The periodic appmximants ( a )  I,x,(r)/p4mm and ( b )  11A2(X)/pgm. In (a) the 
PA is derived from IA,(t') in figure 2(a) by the improper DAR or from lXo(r) (cf the PA 
in broken liner in figure 2(n)) by the proper one. The unit cell is the square formed by 
the centres of the 12-pronged vertices. In ( b )  the bars (or arrows) show the mirrors (or 
glides) of pgm. 

(01 l b l  

Figure 4. The periodic approximants ( a )  IIIX,(r)/p6mm (full lines) and ( b )  
llIAl(T)jp31m. In ( a )  the centres of the 12-pronged vertices are the lattice points of the 
Bravais lattice. The lattice points in the six trigonal hexagons (full lines) arc ignored because 
of the 'frustration'. The once inflated QL (IllA,(r)/p6mm) is shown by broken lines. In 
( b )  the trigonal hexagons are due to the 'frustration'. The PA is considered, alternatively, 
to be a PA to the DQL derived with the window Ww. The centres of the trigonal hexagons 
with a common orientation farm the Bravais lattice of the PA. 
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( b )  
Figure 5. The periodic approximants ((I) IVA,(r)/cmm and ( b )  IVA,(M)/cmm. The 
Bravais lattices of(a) and ( b )  are identical; the rectangular unit cell is shown by the chain 
lines in ( b ) .  

lattice, a triangular one and a rhombic one, each of which is associated with the 
periodic tilings by only squares, triangles or rhombi in the DQL. A PA may incur 
symmetry breaking due to a ‘frustration’; some lattice points of the mother lattice are 
projected on the boundaries of the window and the ‘frustration’ cannot be resolved 
without breaking the symmetry of the PA (Niizeki 1991b). 

5. Discussion 

We have obtained four series, I, 11, I11 and IV, of C D L ~  by restricting p / q  in ( p / q ,  
r / s )  to {wk/uk}, i.e. one of the three series of best approximants to A. We can obtain 
similar series from the remaining two, { f k / u k )  and { 3 u k / w k } .  Since {U*} and { t k }  are 
oddseries, the square CDL (fk/uk, fk/vk) is reducible. In fact, it is equivalent to 
(=t,,IA,_,). On the contrary, ( 3 u k / w k .  3uk/wk) is irreducible. The lattice constant aI  
( = a z )  of the relevant L, is fi times that of IAk. We shall denote the resulting series 
of C D L ~  as I’A. Similarly, series IV has two variants IV’ and IV” and the lattice constants 
of L2 of the variant CDLS are (a- 1) and fi times those of the corresponding CDL in 
IV. We can obtain, however, no variants from I1 or 111 provided that r / s  is restricted 
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to best approximants to a. In summary, we have obtained six new series of CDL, 

I'A, I T ,  IVA, IVZ, IV'A and IVZ. The space groups of the PAS in the variant series 
are similar to those in their originals. 

The three series of PAS, IVA[P], IV'A[P] and IVA[ PI with P = r or M, are merged 
into one grand series of PAS and they are the members of the three-cycles in the grand 
series; the space groups are common (cmm) among the PAS in the grand series and 
the unit cells of the PAS are similar. It can be shown that the last two series are related 
to the first by the transformation associated with the type I1 self-similarity of the DQL. 

Similarly, IA[T] and I'A[T] are merged into a grand series.with two-cycles. 
The phason strain in a CDL is completely characterized by the 2 x 2 block S at the 

bottom left of (see I). S is diagonal for the phason strain with two mirrors and S,, 
and SZ2 represent the magnitudes of the phason strain along the two mirror axes. A 
briefcalculationyieldstbatS,,andS,,of(p/q, r / s )aregivenbyc(Aq-p) / (p+Aq)  
and c ( r - A  s ) / ( r + A  s )  with c = a'/a,  while those of ( p j q ,  are 7-l times those 
of ( p / q .  r / s ) .  S , ,  and Sz2 decrease by factor 1/72k in each series of CDLS. Naturally, 
~ S l l ~  = lSz21 for a square CDL or a hexagonal one; signs are different between S,,  and 
S,, for a square CDL because ( r ' )3  (EH') is not equal to r3 (EH) but to - r3 .  It is 
interesting that the sign of SI, (or S,,) is constant in each series of CDLS, in contrast 
to the case of other QLS in ZD and 3~ where it alternates (Niizeki 1991b, c); this is 
because each series of approximants to 

We have discussed in this paper PAS to so-called Bravais-type DQLS. A non-Bravais- 
type QL is obtained from a Bravais-type one by an appropriate decoration (see, for 
example, Niizeki 1989e). The atomic structure of a real quasicrystal is based usually 
on a non-Bravais-type QL (Janssen 1988). There exist many non-Bravais-type DQLS 

(Niizeki 1988, 1989b, d, Socolar 1989, Nissen 1990, Stampfli 1990). The decagonal QL 

associated with Penrose's rhombic tiling is also of non-Bravais-type (Niizeki 1989b). 
The previous theory (Niizeki 1991a) of the space groups of PAS to a QL and the theory 
of their 'self-similarity' developed in I can be extended to include the non-Bravais-type 
Q L ~ .  This subject will be fully developed in a separate paper. 

tends to from one side only. 
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Appendix 

Three unimodular matrices (a) R, ( b )  M and ( c )  M O :  
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