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Theory of ‘self-similarity’ of periodic approximants to a
quasilattice: II. The case of the dodecagonal quasilattice

Komajiro Niizeki
Department of Physics, Tohoku University, Sendai 980, Japan

Received 24 September 1991

Abstract. The space groups of the periodic approximants (PAs) to the dodecagonal quasi-
lattice in two dimensions are investigated. The Bravais lattices of the PaAs are tetragonal
(p4mm)}, rectangular (pmm), hexagonal (p6mm) and rhombic (cmm). We present several
series of PAs, each of which is derived from a prototype PA by a successive application of
the deflation-and-rescaling (DAR), and the space group is common among the members.
Each series is composed of two subseries; the consecutive members in each subseries are
related by the ‘proper’ DAR and the two subseries are related to each other by the *improper’
DAR.

1. Introduction

We have shown in a previous paper (Niizeki 1991¢, to be referred to as I) that
self-similarity of a quasilattice (QL) gives rise to a striking relationship among the
periodic approximants (Pas) to the L the pAs are grouped into series so that (i) each
series is generated from its prototype by a successive application of the deflation-and-
rescaling, (ii) the space group is common among the members of the series and (iii)
the unit cell of the pa is scaled up by = with the series number, where 7 is the scale
of self-similarity of the relevant qu.

We have excluded in I the case of the dodecagonal quasilattice (DQL) in two
dimensions (2D) because its self-similarity is unique among important QLs in 2> and
3p: the relevant self-similarity transformation is ‘improper’ in the sense that it is not
a pure dilatation but a combined operation of a dilatation and a rotation through =/12
(Stampfli 1986, Niizeki and Mitani 1987). Moreover, the poL is rich in space groups
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of its ras in comparisen with the octageonal Qo or the decagenal one because {§) the

cyclic group 12 has four non-trivial crystallographic subgroups, 2, 3, 4 and 6, whereas
8 or 10 has only two or one, and (ii) v3 has three series of best approximants. We
shall investigate in this paper the space groups of the pasto the DL and the relationships
among them derived from the self-similarity.

We summarize in section 2 the properties of the poL, and in section 3 its self-
similarity. In section 4 we investigate extensively pas to the poL. This section is divided
into four subsections. Section 4.1 is an extension of the theory in I to the poL. Fibonacci
number analogues associated with the pQL are introduced in section 4.2. The mother
lattices of the pAs to the DQL are investigated in section 4.3 and several important series
of pas are presented in section 4.4. Section 5 is devoted to a discussion.
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2. The dodecagonal quasilattice

A qL is obtained by the projection method from a mother lattice which is a periodic
lattice with higher dimensionality than the physical dimension (see, for example,
Janssen 1988). Prior to the projection, the mother lattice is cut with a strip which is
characterized by a phase vector and the window (a finite domain in the internal space).
Two qLs with different phase vectors but a common window are locally isomorphic
but two qQus with different windows are not.

A DQL is obtained when the mother lattice L is the dodecagonal lattice (pt2mm)
in 4p (Niizeki 1989a). The ap Euclidean space E, into which [ is embedded is
decomposed into the physical space E. and the internal one E3; E,= E,® E}. Let
£,=(e, e}) with e€E, and e/c E, be the basis vectors of L: L=
{Z;ni&;|(ny, n2, ny, ny) € Z°}. Then ¢ (or e}) are related to each other by e,,, = re; (or
e/, =r'e}) with i=1,2 and 3, where r (or r') is the rotation through #/6 (or —5/6);
r'=—r. |e]| (or |e}|) take a common value, which we shall denote by a (or a'). In fact,
the value of a' is nothing to do with the properties of the poL and we can choose a'
arbitrarily. e; (or e} are linearly independent over Z. Note that ¢, and e, are perpen-
dicular to each other and so are e} and e).

The Z-module Lp = PL ={Z, me;|(ny, n,, ny, n,) € Z*} {or Ly, =P'L) with P {or P")
being the projector onto E, (or E3} is a dense set in E, (or E3) and called
a prequasilattice. E, has an incommensurate orientation with respect to L and
Lr E,={0}.

Twelve vectors e, = (r)' e, (or e1=(r')""e!}, i =1-12, represent the vertex vectors
of a regular dodecagon I (or D), whose point group is G = 12mm. The 4D rotation
F=r@r' is an element of the point group G {(=12mm) of L, Gis generated by F and
the 4 mirror ¢ = o @ o', where o (or ¢') is a 20 mirror whose axis inciudes e, (or
e}). G leaves E,and E; invariant and acts onto these two subspaces as 20 point groups
G and G’ (=G). We sometimes identify G with G. Lp is invariant against G.

We may write F(g,6,63€,)=(£,£2658,) R, where R is a unimodular matrix given
in the appendix. From #°= -1 and 7*=1 we obtain R®=—1 and R"=1T (the unit
matrix is denoted in this paper by I irrespective of its dimensionality).

We can index x=3, x;g, € E, as [x;x2x,x,]. We may say x is a rational point with
respect to L if x; are all rationals. Rationality of a point in E, (or E}) with respect to
Ly (or L) is defined similarly. Then, P (or P’) is a bijection between the set of all
the rational points in E, and that in E, (or E3). If xe E, is a rational point, we may
index Px and P'x with the same index as that of x.

The poL obtained from L with the projection method is written (Niizeki 1991b} as

Q(x, W)={P(l+x)|le L, P'(I+x)c W} (1)

where x € E, is the 4p phase vector and W (< E%) the window. We assume that W is
a polygon with the point symmetry G’ (=12mm) and its vertices are rational points
with respect to L,

Several types of DQLs are obtained by choosing different windows (Niizeki and
Mitani 1987). The canonical window W, of the pQL is a regular dodecagon whose
vertices are given by v;=(7")'"'p,, i =1-12, with »,=[1111)/3€ E}. W, includes D’
(W.2 D). The relevant pqL is formed of the vertices of Stampfli’s dodecagonal
quasiperiadic tiling (Stampfli 1986}, as shown in figure 1. The basic tiles of the tiling
are a square, a regular triangle and a rhombus. On the other hand, if Wp-= >’ is used
as the window, we obtain a pgL associated with a tiling with squares, triangles and
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Figure 1. The dodecagonal gquasilattice obtained from the 4D dodecagonal lattice L by
using the canonical window. The lattice points are given by the positions of the vertices
of the dodecagonal quasiperiodic tiling. The centres of squares, triangles or rhombi are
derived from the sps of type M, T or C of L. The once inflated QL is superimposed with
the broken lines. The bonds in the inflated QL have different directions from those of the
original QL.

trigonal hexagons; a hexagon is a union of one square, two triangles and one rhombus.
Let W, be the dodecagonal star whose convex (or concave) vertices coincide with the
vertices of W, (or Wy.}. Then Wp & W, W, and the pqL derived with W, is obiained
from that with Wy by dividing each trigonal hexagon into four basic tiles.

x€ E, is called a special point (sp) 1f its point symmetry with respect to L is a
centring group, which is a subgroup of G. An sp is a rational point. There exist six
classes of sps (Niizeki 1989¢, 1990). The six are represented by the symbols I', X, C,
M, T and T'. Their representatives are [0000], [R000], [hA00], [R0AOQ], [£010] and
[trer] with h =3 and ¢t =1 and their point groups are 12mm, mm, mm, 4mm, 3m and
3m, respectively.

The projection of an sp of L onto E, (or E3) is called an sp with respect to Ly (or

). The vertices of W, are sps of type T'. The vertices of the dodecagonal tiling in

figure t are derived from I', the midpoints of the bonds from X and the centres of
rhombi, triangles or squares from C, T or M.

The 12 mirrors of 12mm are grouped into two classes, A and % (Niizeki 1991a); a
mirror of type A passes a vertex of D, while that of type X the midpoint of an edge.
A representative of A (or £) is ¢ (or ro).

3. Self-similarity of the pQL

The 4p transformation 7= rI@®+'I with 7=2++3 being a pv unit and ' =2-/3
{(=1/1), the algebraic conjugate of 7, induces a unimodular transformation among &;

T(€1E28484) = (£,828:8)M (2)

where M is a unimodular matrix given in the appendix; det(M)=1. It follows that

FL=L Notethat 7=2+7+7 ', sothat M = 2]+R+R ). factsasa scalg transforma-
tion onto each of the two subspaces E, and E} and is commutable with G. Using these
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results, we can prove that the DQL has a self-similarity whose scale is equal to +=2++/3
{Niizeki 1989a).

Since R*+ I is a regular matrix, we can conclude from R®+ I =0 that R*—~ R*+ I =0
and, consequently, (R+ R*)(R— R*) = I. Therefore, M,=R+R? is a unimodular
matrix, which is given in the appendix ((M,) ' =R—R?), and 7,=#+ #* as well as
is an automorphism of L; f,L= L. We may write 7,=7,® 7} with 7,=r+r? and
76=r'+(r')>. We obtain 7} = —(7,)"" because r'=—r and r*—r*+1=0. On the other
hand, 7, is equal to 7,75, where 7,= (v3+1)/+/2 is the ‘platinum ratio’ and ry the
rotation through /4. That is, 7, (or 75=—(7,)"") is an expanding (or contracting)
similarity transformatlon of E, (or E%). It cannot be reduced to a pure dilatation
because rg £ G To IS an 1mproper dllatatlon 7, 7 and 7, are commutable with each
other and we obtain (7,)° = 7. Since ¢ G (#,)? is equivalent to 7 as a transformation
of L. Note that 7, exchanges the two types of mirrors, A and Z (Niizeki 1991a).

Using these results we can prove as in I that

Qlx, W) =73 Q(fox, Ty W). (3)

Since W g W, Q(7ox, 7o W) is a sublattice (subset) of Q(7,x, W), sothat 7,Q{x, W)g
Q{7yx, W). It follows that the gL has the ‘improper’ self-similarity with the transforma-
tion 7, (Niizeki 1989a). The ‘improper’ inflation of the poL in figure 1 is superimposed
in the same figure, The directions of the bonds of the inflated poL bisect those of the
original ones because 15°=45"mod 30°. It is important in a later argument that the
vertex vectors of the dodecagon 7))’ are given by e} + e/, i =1-12, with ;= e}.

The 4p transformation 5= pI @ p'I with p=1++3 and p'=1—+3 satisfies pL< L.
More precisely, det(3) =4, and gL is one of the four equivalent sublattices into which
L is divided (Niizeki 1989¢). The integer matrix associated with p is given by M ~ I
because p=r—1. g is a (non-unit) pv number because |p’| <) and we can prove that
the DQL has so-called the type 11 self-similarity with scale p (Niizeki 1989¢). A similar
argument applies to the non-unit pv number 3+2+3 {=v37).

4. The periodic approximants to the pgL

4.1. The general theory

A A to the DQL is constructed by the projection method from a 4p lattice £ which is
a deformation of L due to a linear phason strain. The strain makes a 2D lattice plane
I1, of L overlap perfectly with the physical space E,; $II, = E, and L= $L, where @
is the linear transformation associated with the phason strain. We shall call La
commensurately deformed lattice (cpL) because it is fully commensurate with E,, in
contrast to L.

11, is spanned by two lattice vectors of L, so that it is indexed by a 4x2 integer
matrix K whose columns index the two lattice vectors. II, is indexed, equivalently, by
the dual index J, which is a 2 x 4 integer matrix satisfying JK = 0 and rank(J) =2. Let
Hbea maximal subgroup of G such that it leaves II, invariant. Then it is the point
group of L andis decomposed as HE&H' in which H acts onto E, and H' onto Ej.
In fact, H=H"and H is crystallographic in 2p. H is identified with H.

Every sp of L has its associate among the sps of L. If an sp of L has inversion
symmetry, it remains as an sp after the phason strain is introduced, while ses of the
types T and T’ remain as ses only when the strain preserves the trigonal symmetry.
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The basis vectors &, (=®¢,) of L are decomposed as €; = (e, &}). Only two of the
ot d Bt}

£is are linearly independent over Z, (£1€3é,2,)K =0, and we obtain
(€1€2¢383) = (byby)J (4)

where b;e E} are linearly independent over R. Two rows of J represent rational
approximations to the incommensurate ratios associated with the two directions b,
and b2

The Bravais lattice of the pas obtained from L is given by L,=L~ E,, while
L,=P'L is called the shadow lattice of I (Niizeki 1991b). Two vectors defined by

(a,a;) = (e,e:6;¢) K (5)

are linearly independent over R and belong to L,. a, and a, {or &, and b,) are basis
vectors of L, (or L.} only when K {or J) is ‘unimodular’. This case will be called
irreducible. The point groups of L, and L, are given by H and H'.

A PA to the poL (1) is given by

O W)={PU+H|le L, P(1+5)e W) (6)

with £=®x and W being an appropriate deformation of W, The Bravais lattice of Q~
is equal to L, and the space group is determined by the relative position of P'¥ to L,
(Niizeki 1991a). In particular, the point group 1s equal to that of P’x with respect to
L,. Moreover, if £ is an sp of L, P£ is an sp of @ (Niizeki 1991b). Q is called a regular
pa if its point symmetry conforms to the Bravais lattice L,. In order to obtain a regular
PA, it is necessary that P'f is located on an sp or a special line of L, (Niizeki 1991b).
The space group of a pa associated with a special line of L, is a subgroup of that
associated with an sp which is located on the special line (Niizeki 1991b).

Let v E} be a vertex of W and assume that v is indexed as [£,&:6:€,] with &
being rationals. Then it is ‘natural to assume that Wisa polygon and o b =2, L& is the
corresponding vertex of Wto o This prescription determines W uniquely (cf T). We
shall denote it symbohcally as W=®W. For example, the vertex vectors of the
dodecagon D’'=®dD’ are given by é..

The 2D lattice plane I, is transformed by 7, to another one, IT; = #,, which is
indexed by K' = KM, orJ'=—J(M,)~". The cpL associated with II} is given by I'= rof
and we obtain Ly=1I'n E;=1,L, and L’ PL'=7L,; L2 and L; are similar to L,
and L,, respectively. The point group of L'is given by Pl (7)™ Wthh is isomorphic
with H I’is obtained from L with the phason strain @' = TOCD(TO) , which is smaller
than .

We shall denote by é'(y, V} the pA which is derived from L' with an arbitrary
phase vector y and a window V. Then we can prove in a similar way as in I that

Q'(&, 74 W) = 1,Q(%, W) (7

with £'== #,X. On the other hand, O (f‘ W) with W’ P'Wis a pa to Q(fox w)
because x’ = ®'Tox. Moreover, Q (%', T W) < Q( W’) provided that 'rOWg W'. Thus
we can conclude that Q'(#, W) is the DAR of Q(x, W). i

Let W.= &' W, and assume that &/ are the vertex vectors of W.. Then we can show
that the vertex vectors of the dodecagon 74, W, are given by &+ &0, i=1-12, with
61;= o). A similar relation remains correct also in the case of the window Wy or W,.
TDW is invariant against the pomt group which is the restriction of the point group of
[’ onto E}. Therefore, Q (£, W) and Q (&, 7, W) have a common space group. Using
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these results and making a similar reasoning as that in I we can conclude that the pAs
to the DQL are grouped into several series, each of which is derived from the prototype
PA in it by a successive application of the deflation and rescaling (naR) and the space
group is common among the PAs in the series.

A series of Pas, Qo, C, Qz, ..., can be divided into two subseries Q,, 0., 0, ...
and Ql, Q;, Qs, ...and two consecutwe members in each subseries are related by the

‘proper’ DAR, which is defined by using the transformation #; the second subseries is
derived from the first by the ‘improper’ paR.

4.2. The Fibonacci number analogues associated with 2++/3

The quadratic irrational 7=2++/3 is the positive root of the equation 7*=4r—1.
Iterating the equality =41/ 7 yields an infinite continued fraction, though it is not

rpn-"]af Tt givec rvica tn a aaripe af rational annravimante ta + which ara the ratine of
eguaar, il gives 1is€ 10 a s€es of raliona: approximanis 1o 7, wialga are (0e raties of

consecutive numbers of the integer series defined by the recursion relation u.,=
dup —uy,_; with up=0 and u, = 1; early members of the series {uk} is listed in table 1.
From the recursion relation, we can prove that u,,,— u/r=7*, so that w., — u./7
(¥ or, equivalently, u,.,—u,7=1/7 which gives a measure of the accuracy of the
approximant 7= .,/ u,. Note that u.,,/u> 7

Table 1. The Fibonacci like series associated with 2++/3,

{u)={1,1,3,11,41,..}
{u}=1{0,1,4,15,56,.. .}
{w,}=1{1,2,7,26,97,..}

Let us derive from the series {u;} another two, {v,} and {w}, by t, = u, —u;_; and
W, =, + v, (see table 1), The new series are generated by the same recursion relation
as that of {u} but with different initial conditions. The parity alternates in {u,} and
{w.}, while {v:} is composed of odd numbers. Note that v — v /7= (+3~1)7* and
Wiey ~ Wi/ T 7=v37"

Best approximants to 7 are obtained by the continued fraction theory from its
regular continued fraction expansion. They are grouped into three series {u; .,/ u.},
{tee/ vy and {wy/ wils weyt/ W and v,/ v, are principal convergents to the continued
fraction but wi.,/ w, is an intermediate one between u, ../ u, and v,/ ty.,. Note that
{01/ vty Wi/ Wit < 7. Since wi_; < v, <y < w, < vy, for k=2, the three series of
approximants are merged into one grand series and they are the members of the
three -cycles in the grand series,

If p/q is a best approximant to 7, (p—2q)/q (=p/q—2) is to V3. Note, in this
respect, that u,,, —2u, = w, and wy,— 2w, =3u,. That is, w,/uy, t/t, and 3u./w,
are best approximants to v3 with f, = vy, — 20y (=t + 4,;). Note that wi +v3u, =7
and t+v30 = (V3-1)r~

Let us assume that p/q is an approximant to +3. Then r(p++v3q)=p' ++3q with

()G 2 ®

p'/q’ is a more accurate approximant to v3 than p/q; p'/q’ is the next generation to
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p/q with respect to the scaling with . For example, if p/q = w./u, then p'/q’ =
Wi+y/ ey . Similarly, the ‘next generation’ to p/q with respect to the scaling with p
(=1++3) is given by (p+3q)/( p + q). For example, the ‘next generation’ in this sense
to wi/ty i8S firy/ Vet

4.3. The mother lattices of the pas with mirrors

We shall investigate only the pas having two mirrors perpendicular to each other. The
mirrors must be of the same type (A or ). We consider for the moment the case of
type A mirrors, which are assumed to be parallel to e, and e, in E,. Let us take the
Cartesian coordinate systems for E, and E} so that the two axes coincide with the two
mirrors. Then we may write

(2 =3 1 0)
(esesed={y 1 5 _») )

with a'=2. The first (or second) component of e! refers to the horizontal {or vertical)
mirror in E}, so that +/3'in the first (or second) row in (9) is the incommensurate ratio
associated with the relevant mirror axes. We take a 2D lattice plane I, indexed by the
dual index

29 -p 4 0)
J= 10
(0 -5 r -—2s (10)

where p/q (or r/s) is a rational approximant to +/3 in the first (or second) row in (9).
The dual index K to J is given by

p 29 0 -q)
'K=
(—s 0 25 r (1)

which satisfies JK =0. We can assume that p/q and r/s are simple fractions. Then J
and K are both irreducible {unimodular)} except for the case where p=s mod 2 and

g=r mod 2 but they are both reducible in the exceptional case.

The cpL associated with IT, is characterized by the pair of fractions (p/g, r/
ons \p/ 4, ris;

Note that {r/s, p/q} is equwalent to {p/q, r/s) because they are transformed to each
other by the 4p mirror 7°¢ (€ G). We are interested in the case where both p/ q and
r/ s are best approximants to +/3.

From (5) and (11) we can conclude that a, (or a,) is horizontal (or vertical) and
a,=|a)|= a{ p++3 q) and a,=|a;| = a(r++3 s). Similarly, b, (or b,)} is horizontal (or
vertical) and b, = |b,|=v3 a'/(p++v3 q) and b,=|b,|=v3 a'/(r++3 5). If K (ot J) is
irreducible, @, and a, (or b, and b,) are the basis vectors of L, (or L,); the Bravais
class to which L, (or L,) belongs is p4mm (a square lattice) or pmm (a rectangular
lattice). On the contrary, if it is reducible, the centring takes place and the basis vectors
are a,=(a,—a,)/2 and a,=(a,+a:)/2 (or bi=5b,—b, and b;=b,+b,); L, (or L,)
belongs to pémm (a hexagonal lattice) or cmm (a rhombic lattice).

The 2p lattice plane 7II, of L is indexed by K'= KM (or J=JM™"). K’ (or J')
takes the form (11) {or (10)) but p, g, r and s are replaced by their next generations,
P, q', r and s’ (cf (8)). Consequently, #(p/gq, r/s)= (p "Tq', r'/s

We consider next the effect of the transformation 7, onto a ¢DL. Since 7, exchanges
the two types of mirrors, A and 2, it changes the type of mirrors of a cDL to the other
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type. Therefore, a cpL with type £ mirrors is written with an appropriate coL {p/gq,

r/sy as 7o{p/q, r/s), which we shall denote as (p/q, r/s)s. Then, the relevant lattice
plane of L is indexed by Kz = KM, (or Jy=—~J(M;)'). We obtain

,(KE)=(q t ot q) Jf(r -9 —q t)
~“u =v v u v —u u ~—v
where t=p+g, u=r+2s and v=r+s. Therefore, the two mirrors of (p/ g, r/s); are
parallel to e;+e; and e;—e, in E,. The expression for Js is natural because the
components of e;, i =1-4, along the mirror axis e5+e3 (or e} —e}) are proportional to
(p, —1,—1,p) {or (—p’, —1,1, p")) with p=1++3 (or p’=1-+3) and t/q (or v/u) is
an approximant to p (or |p'|).

Since a pa associated with {p/g, r/s)s is constructed with {p/q, r/s) by (7), we
need not consider the cpL {p/q, r/s)s any further. It should be noted, however, that

pas of type A and those of type % have no relations in the case of the octagonal gL
(see I) or the decagonal one (Niizeki 1991b).

4.4. Several important series of PaAs

We will not be interested in a pa such that the values of the two lattice constants «,
and a, are very different. We consider in this section the case where p/¢g is fixed to
wi/ ;. and r/s takes one of the four choices: (I) wi/u;, (11) 4/ ve, (ITT) 3u,/wi and
(IV) wi_y/ue_,. That is, a, is fixed to ar* and a,/a, =1,v3 ~1,v3 and 1/ 7, respectively.
On the basis of the parity sequences in {1}, {v,} and {w;} together with ¢ = v, mod
2, we can show easily that X and J are irreducible in T and II but are reducible in II1
and IV. More precisely, L, and L, belong both to pdmm, pmm, pémm and cmm for
I, II, IIT and IV, respectively. The unit cell of L, in IV is similar to the rhombic tile
in the pQL. Since {p/q, r/s) and (p/ g, r/s)s are distinguished, there exist eight series
of ¢cDhLs, 1A, TZ, TIA, TIZ, IIIA, IITX, IVA and IVZ. A cpL in each of the eight series
can be designated, alternatively, by the series symbol and the number in the series,
e.g. [A;, IZ,, IIA,, etc.

1A and 1%, for example, can be considered to be subseries of the union series,
I=1AU IS, which is generated from IA, by a successive application of 7,, while I4
(or IZ) is from 14, (or 1Z;) by a successive application of 7.

We consider only regular approximants associated with the sps of L,. The selevant
sps are I" ([00]) and M ([hh] with h =3) for the square lattice, [, M, X ([h0]) and Y
([0A]) for the rectangular lattice, I' and T ([21]/3) for the hexagonal lattice and T’
and M for the rhombic lattice. The point group of each of these sps is the same as
that of L, except for the case of T, whose point group is 3m. A pa associated with an
sp will be represented by the symbol for the sp as Q[l‘ 1, Q[X 1, etc, or, more precisely,
as IA[T'], IIZ, [ X], etc.

The sps of class C of the sp dodecagonal lattice L have mirrors of type 2 only and
the mirrors are lost by the introduction of the phason strain of type A; only the inversion

symmetry is preserved on the deformation. On the other hand, the sps of classes X,
A and R hava mireare af tvna A Thaca mirrare are Inct hyv the nhﬂ&nn strain unless

AFI GEAM S LG YAV LILILWAAS WL L P el L WOV GRS QRN SRSl o) wiiw praaDOuis SRas0 Slaevasl

they are parallel to the mirrors of the strain. Thus, cpLs in IA, for example, have only

two classes of sps with the point group 4mm; they are derived from I and M of L.
The space group of Q[I‘] is always identical to that of L,. However, a few

considerations are necessary for the cases of other sps. We begin by considering the
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case Q"[M 1=1A,[M], whose point group is 4mm. A PA with the space group p4mm
has two classes of sps whose point groups are 4mm. Such sps must be derived from
sps of classes I' and M of 1A,. However, the latter sps are projected onto the sps of
[A,{I'] only. Therefore, the space group of 1A, M] cannot be p4dmm and is determined
to be pdg. The space group may be explicitly shown as 1A,[M]/pdg. By similar
arguments, we can determine the space groups of pas of other cases. These results are
summarized in table 2.

Qnunr-:l paA. with Aifaramt o Ara rmes
W FALULL £ /Ad YYiLil ulll\dl\/lll. Dpa\a\a Eluuyu al‘f PA\-B

and IVZ,[I'] are the prototype approximants in the relevant

I—_J

antad in Roviran
SIS ifl EUTEs

series; they are a square

Table 2. The space groups of regular approximants in the four series I, 11, [T and IV, The
Bravais classes of the four are shown in the first column. The second block of columns
show the space groups when the phase vector P'x is located on the special points of L,
(the shadow lattice) as shown in the first row; M in the row should be read as T for case
II1. The last column shows the ratios of the lattice constants of the rectangular unit cell.
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Figure 2. The periodic approximants (a) IAI(I“)/p4mm and (b} lA,(M)/P4g {full lines)
.......... T e 3 I 7 BaN

and their inflations \Ufﬁﬁéﬁ ﬂﬁt‘:S) The inflated Pas are cqu.ﬂ [} l‘-okl Jand Lzl M} except

for their scales. Both the two PAs with full lines are derived from the cpoL IA,. The unit
cell of (a) is the square whose corners coincide with the centres of the 12-pronged vertices,
while that of (b} is shown with chained lines. The vertices (or edge centres) of the unit
cell in (&) are the special points of the point group 4 {or mm).
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Figure 3. The periodic approximants (a} 1Z,{I')/p4mm and (&} I1A,{X }/pgm. In (a) the
PA is derived from 1A, (T) in figure 2(a) by the improper DAR or from IZy(F) (cf the pa

in broken lines in figure 2(a)) by the proper one. The unit cell is the square formed by
the centres of the 12-pronged vertices. In (b) the bars (or arrows} show the mirrors {or
glides) of pgm.
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Figure 4. The periodic approximants {(a} HIZ(F)/pémm (full lines) and (b)
I1IA,(T)/p3im. In (@) the centres of the 12-pronged vertices are the lattice points of the
Bravais lattice. The Jattice points in the six trigonal hexagons (full lines) are ignored because
of the ‘frustration’. The once inflated QL (II1A,{I'}/p6mm) is shown by broken lines. In
(b) the trigonal hexagons are due to the ‘frustration’. The pA is considered, alternatively,
to be a PA to the DQL derived with the window Wp,.. The centres of the trigonal hexagons
with a common otientation form the Bravais lattice of the pa.
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(a)

(b]

Figure 5. The periodic approximants (a) IVA,(T)/cmm and (b) IVA,(M)/cmm. The
Bravais lattices of (@) and (b} are identical; the rectangular unit cell is shown by the chain
lines in {(b).

lattice, a triangular one and a rhombic one, each of which is associated with the
periodic tilings by only squares, triangles or rhombi in the pQL. A pA may incur
symmetry breaking due to a ‘frustration’; some lattice points of the mother lattice are
projected on the boundaries of the window and the “frustration’ cannot be resolved
without breaking the symmetry of the pa (Niizeki 1991b}).

5. Discussion

We have obtained four series, I, IT, III and IV, of cpLs by restricting p/q in (p/q,
r/5) to {wi/us}, i.c. one of the three series of best approximants to v'3. We can obtain
similar series from the remaining two, {t./ v} and {3u,/w,}. Since {v:} and {#.} are
odd.series, the square oot {f/ v, /1) is reducible. In fact, it is equivalent to %, _,
(=731A,_,). On the contrary, {(3u,/w,, 3u,/w,) is irreducible. The lattice constant q,
(=a,) of the relevant L, is +/3 times that of 1A,. We shall denote the resulting series
of cDLs as I'A. Similarly, series I'V has two variants IV’ and IV" and the lattice constants
of L, of the variant cpLs are (v3—1) and +/3 times those of the corresponding ¢pL in
IV. We can obtain, however, no variants from 11 or II] provided that r/s is restricted
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to best approximants to v3. In summary, we have obtained six new series of CDLs,
I'A, I'S, IV'A, IV'E, IV'A and IV"Z. The space groups of the pas in the variant series
are similar to those in their originals.

The three series of pas, IVA[P], IV'A[ P] and IV"A[ P] with P =T or M, are merged
into one grand series of pas and they are the members of the three-cycles in the grand
series; the space groups are common {cmm) among the pas in the grand series and
the unit cells of the paAs are similar. It can be shown that the last two series are related
to the first by the transformation associated with the type II self-similarity of the poL.
Similarly, IA[T"] and I'A[T"] are merged into a grand series-with two-cycles.

The phason strain in a oL is completely characterized by the 2x2 block S at the
bottom left of @ (see I). S is diagonal for the phason strain with two mirrors and S,
and S, represent the magnitudes of the phason strain along the two mirror axes. A
brief calculation yields that S;; and S,, of {p/q, r/s) are given by ¢(v3 g - p)/(p++v3 q)
and ¢(r—+/3 5)/(r++3 s} with ¢ = a’/ a, while those of {p/q, r/s)s are 7~ times those
of {p/q, r/s). S, and S,, decrease by factor 1/7°* in each series of chLs. Naturally,
|8):] =|84,| for a square coL or a hexagonal one; signs are different between $,, and
5,, for a square cpL because (r')’ (¢ H') is not equal to r* (¢H)} but to —r*. It is
interesting that the sign of S,; (or S,;) is constant in each series of cDLs, in contrast
to the case of other QLs in 20 and 3p where it alternates (Niizeki 1991b, c); this is
because each series of approximants to +/3 tends to +/3 from one side only.

We have discussed in this paper pas to so-called Bravais-type pQLs. A non-Bravais-
type QL is obtained from a Bravais-type one by an appropriate decoration (see, for
example, Niizeki 1989¢). The atomic structure of a real quasicrystal is based usually
on a non-Bravais-type gL (Janssen 1988). There exist many non-Bravais-type DQLs
(Niizeki 1988, 1989b, d, Socolar 1989, Nissen 1990, Stampfli 1990). The decagonal QL
associated with Penrose’s rhombic tiling is also of non-Bravais-type {Niizeki 1989b).
The previous theory {Niizeki 1991a) of the space groups of PAs to a gL and the theory
of their ‘self-similarity’ developed in I can be extended to include the non-Bravais-type
QLs. This subject will be fully developed in a separate paper.
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Appendix

Three unimodular matrices (a) R, (b) M and (¢) M,:

(a) (b) (c)
000 -1 210 -1 00 -1 -1
100 0 2 21 10 0 -1
010 1 01 2 2 11 1 1
001 0 -1 0 1 01 1 1
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